TIME OF CONCENTRATION FOR EX-1 & EX-4

		Time	of Concentra	tion and	Tra	vel Time			
Flow Type	Length (ft)		Slope(ft/ft)	Surface		Mannings	"n"	Velocity (ft/sec)	Travel Time (min)
Sheet		100	0.12		i	_	0.8	n/a	19.520
Shallow Concentrated		348	0.09		u		n/a	4.84	1.198
Shallow Concentrated		436	0.18		u		n/a	6.85	1.062
Shallow Concentrated		203	0.29		u		n/a	8.69	0.389
Shallow Concentrated		355	0.23		u		n/a	7.74	0.765
Shallow Concentrated		116	0.06		u		n/a	3.95	0.489
Time of Concentration									23.423
Sheet Flow Surfaces a b c d d f f g h	Smooth Surface fallow (no residue) cultivated < 20% Res. cultivated > 20% Res. grass - range, short grass, dense grass, bermuda woods, light woods, dense range, natural		0.011 0.05 0.06 0.17 0.15 0.24 0.41 0.4 0.8 0.13			Shallow Co u p $\frac{Shallow}{T = Trave}$ L = flow I V= Avera T = L/360	once Cor el tin eng age ` 00V	entrated Surface C ncentrated Flow ne (hr) th (ft) Velocity	odes
2yr 24hr rain event 2.8 Sheet Flow = Travel time (hr) = Manning's Roughness Coefficient = dense woods = 0.8 = flow length (ft) P = 2-year, 24-hour rainfall (in) = 2.8 in = Slope of Hydraulic Grade Line			8		TIME OF C CONSIDER FOLLOWIN FLOW BY I INTENSITY TABLES AI CONCENT THE SWAL EVENT FO	ONC RING JG FL INTE WA ND IN RATI	ENTRATION WAS I THE FIRST 100' AS LOW TYPES AS SHA RVALS IN WHICH A S DETERMINED BY NTERPOLATING FO ION. AS SIZED CONSIDE IE INTENSITY.	DETERMINED BY SHEET FLOW, AND ALLOW CONCENTRA VERAGE SLOPE CHA CONSIDERING THE R THE TIME OF R THE TIME OF RING A 100-YEAR ST	

THE PROPOSED 12-IN PIPE WAS SIZED CONSIDERING A 25-YEAR STORM EVEN FOR THE INTENSITY.

Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	1.78 (1.55-2.08)	2.23 (1.93-2.62)	2.84 (2.45-3.32)	3.34 (2.84-3.95)	4.01 (3.29-4.96)	4.54 (3.61-5.75)	5.08 (3.92-6.62)	5.63 (4.20-7.61)	6.37 (4.52-9.08)	6.96 (4.73-10.3)
10-min	1.28 (1.10-1.49)	1.60 (1.39-1.87)	2.03 (1.76-2.38)	2.39 (2.04-2.83)	2.87 (2.35-3.55)	3.25 (2.59-4.12)	3.64 (2.81-4.75)	4.03 (3.01-5.45)	4.57 (3.24-6.51)	4.99 (3.39-7.41)
15-min	1.03 (0.892-1.20)	1.29 (1.12-1.51)	1.64 (1.42-1.92)	1.93 (1.64-2.28)	2.32 (7.90-2.86)	2.62 (2.09-3.32)	2.93 (2.26-3.83)	3.25 (2.42-4.40)	3.68 (2.61-5.25)	4.02 (2.73-5.97)
30-min	0.716 (0.620-0.834)	0.898 (0.778-1.05)	1.14 (0.984-1.34)	1.34 (1.14-1.59)	1.61 (32-1.99)	1.82 (1.45-2.31)	2.04 (1.57-2.66)	2.26 (1.69-3.06)	2.56 (1.82-3.65)	2.79 (1.90-4.15)
60-min	0.505 (0.438-0.588)	0.634 (0.549-0.740)	0.806 (0.695-0.943)	0.946 (0.807-1.12	1.14 (0.931-1.40)	1.29 (1.02-1.63)	1.44 (1.11-1.88)	1.60 (1.19-2.16)	1.81 (1.28-2.58)	1.97 (1.34-2.93)
60-min	0.505 (0.438-0.588) (SD Pip i = 1.92	0.634 (0.549-0.740) ated for 23.42 e Calculation) in/hr	0.806 (0.695-0.943) min duration	0.946 (0.807-1.12)	1.14 (0.931-1.40)	1.29 (1.02-1.63)	1.44 (1.11-1.88)	1.60 (1.19-2.16)	1.81 (1.28-2.58) nterpolated for Swale Calcula = 2.43 in/br	(1.3 (1.3 23.4 tion)

TIME OF CONCENTRATION FOR EX-2 & EX-3

Time of Concentration and Travel Time									
Flow Type	Length (ft)		Slope(ft/ft)	Surface		Mannings "n"	Velocity (ft/sec)	Travel Time (min)	
Sheet		100	0.16		i	0.8	n/a	17.398	
Shallow Concentrated		269	0.18		u	n/a	6.85	0.655	
Shallow Concentrated		203	0.29	I	u	n/a	8.69	0.389	
Shallow Concentrated		355	0.23	I	u	n/a	7.74	0.765	
Shallow Concentrated		116	0.06		u	n/a	3.95	0.489	
Time of Concentration								19.696	
Sheet Flow Surfaces						Shallow Conce	entrated Surface C	odes	
а	Smooth Surface		0.011			u			
b	fallow (no residue)		0.05			р			
С	cultivated < 20% Res.		0.06						
d	cultivated > 20% Res.		0.17						
е	grass - range, short		0.15		Г	Shallow Co	a controt of Flow		
f	grass, dense		0.24			<u>Shallow Col</u>	icentrated Flow		
g	grass, bermuda		0.41			I = II a Ver III	the (ff)		
h	woods, light		0.4			L = 1000 leng	Velocity		

0.8

0.13

2.8

2yr 24hr rain event

Sheet Flow

I

j

- T = Travel time (hr)
- n = Manning's Roughness Coefficient = dense woods = 0.8

woods, dense

range, natural

- L = flow length (ft)
- P = 2-year, 24-hour rainfall (in) = 2.8 in
- s = Slope of Hydraulic Grade Line

 $T = [0.007(nL)^{0.8}] / (P^{0.5})(s^{0.4})$

= Average Velocity

T = L/3600V

TIME OF CONCENTRATION WAS DETERMINED BY CONSIDERING THE FIRST 100' AS SHEET FLOW, AND FOLLOWING FLOW TYPES AS SHALLOW CONCENTRATED FLOW BY INTERVALS IN WHICH AVERAGE SLOPE CHANGED. INTENSITY WAS DETERMINED BY CONSIDERING THE NOAA

TABLES AND INTERPOLATING FOR THE TIME OF CONCENTRATION.

THE SWALE WAS SIZED CONSIDERING A 100-YEAR STORM EVENT FOR THE INTENSITY.

THE PROPOSED 12-IN PIPE WAS SIZED CONSIDERING A 25-YEAR STORM EVEN FOR THE INTENSITY.

		Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	1.78 (1.55-2.08)	2.23 (1.93-2.62)	2.84 (2.45-3.32)	3.34 (2.84-3.95)	4.01 (3.29-4.96)	4.54 (3.61-5.75)	5.08 (3.92-6.62)	5.63 (4.20-7.61)	6.37 (4.52-9.08)	6.96 (4.73-10.3)	
10-min	1.28 (1.10-1.49)	1.60 (1.39-1.87)	2.03 (1.76-2.38)	2.39 (2.04-2.83)	2.87 (2.35-3.55)	3.25 (2.59-4.12)	3.64 (2.81-4.75)	4.03 (3.01-5.45)	4.57 (3.24-6.51)	4.99 (3.39-7.41)	
15-min	1.03 (0.892-1.20)	1.29 (1.12-1.51)	1.64 (1.42-1.92)	1.93 (1.64-2.28)	2.32	2.62 (2.09-3.32)	2.93 (2.26-3.83)	3.25 (2.42-4.40)	3.68 (2.61-5.25)	4.02 (2.73-5.97)	
30-min	0.716 0.620-0.834)	0.898 (0.778-1.05)	1.14 (0.984-1.34)	1.34 (1.14-1.59)	1.61 132-1.99)	1.82 (1.45-2.31)	2.04 (1.57-2.66)	2.26 (1.69-3.06)	2.56 (1.82-3.65)	2.79 (1.90-4.15)	
60-min	0.505 0.438-0.588)	0.634 (0.549-0.740)	0.806 (0.695-0.943)	0.946 (0.807-1.12)	1.14 (0.931-1.40)	1.29 (1.02-1.63)	1.44 (1.11-1.88)	1.60 (1.19-2.16)	1.81 (1.28-2.58)	1.97 (1.34-2.93)	

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 24 2021

Swale Sizing EX-3

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 24 2021

Pipe Sizing EX-3 (10-in SDR-35)

Circular Diameter (ft)	= 0.83		Highlighted Depth (ft) Q (cfs) Area (sqft)	= 0.83 = 1.543 = 0.54	
Invert Elev (ft) Slope (%) N-Value	= 1.00 = 0.30 = 0.010		Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 2.85 = 2.61 = 0.56 = 0.00	
Calculations Compute by: No. Increments	Q vs Depth = 10	Q = cia c = runoff coeffic i = intensity = 2.7 considering 25-y a = drainage are Q = 0.3 x 2.10 in	EGL (ft) cient = 0.3 10 in/hr (interpolated NO/ vear storm) ea = 1.81 acres h/hr x 1.81 acres = 1.14 cf	= 0.96 AA Estimate	
Elev (ft)		Refer to EX-3 to	r pipe drainage area	Section	
2.00 — 1.75 — 1.50 —					
1.25 —					
1.00 —					
0.75 —	0		1		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 24 2021

Swale Sizing EX-2

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 24 2021

Pipe Sizing EX-2 (12-in SDR-35)

Circular Diameter (ft)	= 1.00		Highlighted Depth (ft) Q (cfs)	= 1.00 = 4.141	
Invert Elev (ft) Slope (%) N-Value	= 1.00 = 0.80 = 0.010		Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 0.79 = 5.27 = 3.14 = 0.86 = 0.00	
Calculations Compute by: No. Increments	Q vs Depth = 10	Q = cia c = runoff coeffi i = intensity = 1. considering 25- a = drainage are Q = 0.3×2.10 in Refer to EX-2 for	EGL (ft) cient = 0.3 .92 in/hr (interpolated NOA year storm) ea = 4.28 acres n/hr x 4.28 acres = 2.70 cfs or pipe drainage area	= 1.43 A Estimate	
Elev (ft)		Se		Depth (ft)	
3.00 —					2.00
2.50 —					1.50
2.00 —					1.00
1.50 —					0.50
1.00 —					0.00
0.50 —	,	1	2	3	-0.50

Reach (ft)

Copyright C 2015 by Sandis

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 24 2021

Swale Sizing EX-1

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 24 2021

Pipe Sizing EX-1 (12-in SDR-35)

Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: No. Increments	 = 1.00 = 1.00 = 1.20 = 0.010 Q vs Depth = 10 	Q = cia c = runoff coeffi	Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)	= 1.00 = 5.071 = 0.79 = 6.46 = 3.14 = 0.93 = 0.00 = 1.65	
		i = intensity = 1. considering 25- a = drainage are Q = 0.3 x 1.92 in Refer to EX-1 fo	vA Estimate s		
Elev (ft)		See		Depth (ft)	
3.00					- 2.00
2.00			~		- 1.00
1.50 —					- 0.50
1.00 —					- 0.00
0.50		1	2	3	0.50

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Existing SD Metal Corrugated Pipe Sizing EX-4

Circular Diameter (ft)	= 1.50		Highligh Depth (ft) Q (cfs) Area (sqf	ted) t)	= 1.50 = 14.42 = 1.77	
Invert Elev (ft) Slope (%) N-Value	= 1.00 = 5.40 = 0.022		Velocity (Wetted P Crit Deptl Top Widt	ft/s) lerim (ft) h, Yc (ft) h (ft)	= 8.16 = 4.71 = 1.40 = 0.00	
Calculations Compute by: No. Increments	Q vs Depth = 10	EGL (ft) Q vs Depth = 10 Q = cia c = runoff coefficient = 0.3 i = intensity = 1.92 in/hr (interpolated NO) considering 25-year storm) a = drainage area = 14.75 acres $Q = 0.3 \times 1.92 in/hr \times 14.75 acres = 8.50$		= 2.54		
Elev (ft)		Refer to EX	(-4 for hill side drain	nage area		
3.00			Sec	tion		
2.50 —						
2.00 —						
1.50 —						
1.00						
0.50)	1		2	3	