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Citizen science helps predict risk of
emerging infectious disease

Ross K Meentemeyer"*", Monica A Dorning’, John B Vogler?, Douglas Schmidt’, and Matteo Garbelotto™*

Engaging citizen scientists is becoming an increasingly popular technique for collecting large amounts of ecolog-
ical data while also creating an avenue for outreach and public support for research. Here we describe a unique
study, in which citizen scientists played a key role in the spatial prediction of an emerging infectious disease. The
yearly citizen-science program called “Sudden Oak Death (SOD) Blitz” engages and educates volunteers in detect-
ing the causal pathogen during peak windows of seasonal disease expression. We used these data — many of
which were collected from under-sampled urban ecosystems - to develop predictive maps of disease risk and to
inform stakeholders on where they should prioritize management efforts. We found that continuing the SOD
Blitz program over 6 consecutive years improved our understanding of disease dynamics and increased the accu-
racy of our predictive models. We also found that self-identified non-professionals were just as capable of detect-
ing the disease as were professionals. Our results indicate that using long-term citizen-science data to predict the

risk of emerging infectious plant diseases in urban ecosystems holds substantial promise.

Front Ecol Environ 2015; 13(4): 189-194, doi:10.1890/140299

Mitigating threats to biodiversity and ecosystem func-
tion from unexpected outbreaks of emerging infec-
tious disease hinges on scientists’ ability to detect and pre-
dict disease spread across broad spatial extents in a timely
manner (Crowl et al. 2008). The economic cost of collect-
ing sufficient data to develop empirical models of non-
human diseases, such as those affecting plants and wildlife
in ecological communities, is often prohibitive but may be
offset by involving volunteer citizen scientists in the data
collection process. Citizen-science programs offer promis-
ing new approaches for increasing the extent and fre-
quency of sampling efforts (Dickinson et al. 2012). For
example, the world is beginning to see potential for accel-
erated responses to natural disasters — through rapid com-
pilation of volunteered geographic information at the
forefront of an event (Goodchild and Glennon 2010).
Currently, engaging citizen volunteers in collecting timely
georeferenced data on the spread of emerging pathogens is
an under-explored opportunity that could be used to help
predict disease risk while simultaneously educating the
public about disease control and prevention and involv-
ing stakeholders in the scientific and planning processes
(Dickinson et al. 2012).

Citizen scientists are increasingly being called upon to
survey the abundance and distribution of organisms (see
review in Dickinson et al. 2010), but with few notable
applications focused on pests and pathogens (eg ZomBee
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Watch, House Finch Disease Survey). When responding
to the threat of emerging diseases, the goal is often not
just to monitor spread but to predict locations where
future outbreaks are imminent. However, predictive mod-
els are only as good as the available data and, as such,
concerns about increased observer error and sampling
bias in citizen-science observations are still common
(Crall et al. 2011; Kremen et al. 2011). Fortunately, assess-
ment of data quality and adequate training for volunteers
can reduce observer error (Gardiner et al. 2012), and tar-
geted sampling strategies can limit sampling bias
(Dickinson et al. 2010). Targeted approaches are espe-
cially useful for analyzing seasonal events and directing
data collection to coincide with peak windows for obser-
vation (eg timing of disease expression, flight of migra-
tory birds). Citizen-science programs that limit observer
error and sampling bias through targeted sampling tech-
niques and well-designed volunteer training sessions can
also produce extensive datasets that are critically needed
for predicting disease spread with empirical models.
Using the Sudden Oak Death (SOD) Blitz program
(www.sodblitz.org) as a case study, we focus on two ques-
tions that shed light on the value of citizen science aug-
mented with geographic information and crowdsourcing
(collecting data by soliciting contributions from the pub-
lic) for responding to emerging infectious diseases: (1)
does the SOD Blitz improve our understanding of
pathogen habitat and our ability to predict disease risk?,
and (2) did the educational background and professional
experience of our citizen-science participants affect the
probability of disease detection? The presence of SOD is a
major public concern in coastal California and Oregon
due to the widespread mortality of millions of socially and
ecologically important trees. SOD is caused by the gener-
alist and invasive plant pathogen Phytophthora ramorum,
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Figure 1. (a) Symptomatic leaves on the reservoir host, California bay lawrel (Umbellularia
californica), Santa Cruz County, CA. (b) Young citizen scientists locating and collecting
symptomatic leaves with the aid of the SODmap mobile application, Alameda County, CA.
(c) Cumulative infected (red) and uninfected (green) foliar samples collected PreBlitz and by
citizen-science participants over the 6-year Blity sampling period between 2008 and 2013. (d)
Locations of PreBlitz and cumulative SOD Blitz samples by 2013 within the 11-county study
extent. (a) and (b) Courtesy of M Garbelotto Lab, UC Berkeley.

which affects numerous plant species and is killing mil-
lions of oak (Quercus spp) and tanoak (Notholithocarpus
densiflorus) trees in California and Oregon (Rizzo and
Garbelotto 2003; Cobb et al. 2013). In the early 2000s,
the first SOD monitoring networks were established on
public lands, with very few observations collected in met-
ropolitan areas or at the wildland—urban interface. This
gap in our observation network has hindered our ability
to predict disease spread and effectively prioritize future
detection and management efforts, particularly in areas
where residents are being affected by loss of trees. The
multiyear SOD Blitz citizen-science program expands
monitoring and detection in under-sampled urban areas
and helps private landowners protect threatened trees.

I Methods

The SOD Blitz program

The SOD Blitz program was initiated in 2008 and contin-
ues today with the goal of tracking disease spread and pri-
oritizing treatment of vulnerable trees at high-risk loca-
tions in California. Crowdsourcing of SOD Blitz

volunteers allows us to use targeted
sampling techniques to collect data
during the narrow window of peak
disease expression (ie display of
symptomatic leaves) and in areas
previously underrepresented in our
sampling efforts, including urban
areas and private properties located
throughout the central California
coastal region. Each year, we adver-
tise Blitz events via press releases,
televised news stories, newspaper
and radio announcements, email
campaigns, and two websites
(www.suddenoakdeath.org  and
www.matteolab.org). We also tap
into networks of community groups
focused on conservation, green
spaces, herbaria, nature preserves,
amateur mycology, and botany.
SOD Blitzes are integrated into
these groups’ official monthly activ-
ities, which helps ensure high par-
ticipation levels. Participants origi-
nate from a wide spectrum of
communities, from high-school stu-
dents and concerned homeowners
to docents, arborists, firefighters,
and K12 teachers.

All of our program’s citizen scien-
tists participate in workshops to gain
a general education on the history
and impacts of the disease, and for
on-the-ground training to detect

disease symptoms and collect symptomatic plant tissue
(Figure 1a) for laboratory diagnosis. During the “Blitzes”,
trained participants use a symptom detection guide and a
mobile mapping tool (Garbelotto et al. 2014) to identify
and map symptomatic trees (Figure 1b). Storage packets
for symptomatic tissue allow each participant to sample
leaves from up to 16 trees during a given annual Blitz.
Submitted leaf tissue samples undergo species-specific mol-
ecular assays involving polymerase chain reaction (PCR)
analysis (Hayden et al. 2006) to determine presence or
absence of the pathogen. Maps of disease distribution and
risk predictions (described below) are available online
(www.sodmap.org), enabling participants to visualize their
efforts and understand the threats posed by SOD.

Predicting disease risk

For each year from 2008 through 2013, we combined dis-
ease presence and absence data (leaf sample locations
linked to PCR results) collected by participants with other
research observations collected prior to the SOD Blitz pro-
gram (PreBlitz samples 2000-2007; see description of
species data in Vdaclavik et al. 2012). We analyzed the rela-
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Figure 2. (a) Predicted spatial distribution of disease risk through time (PreBlitz — 2013). (b) Detail view of predicted disease risk
(PreBlitz inset) in counties north of San Francisco. (c) Detail view of predicted disease risk (2013 inset) based on cumulative SOD
data (PreBlitz — 2013). (d) Application of preventative treatment (phosphonate compound injections) to a valuable host tree, coast
live oak (Quercus agrifolia), located in a high-risk area, Marin County, CA. (d) Courtesy of M Garbelotto Lab, UC Berkeley.

tive importance of environmental and societal drivers of
the probability of infection by evaluating all possible gen-
eralized linear model (GLM) regression equations from
combinations of hypothesized site suitability factors
(WebTable 1) and selecting the best model based on
Akaike’s Information Criterion (AIC). After each annual
SOD Blitz, we used the locations of the positive samples to
calculate a negative exponential dispersal kernel
(Meentemeyer et al. 2012) that estimated the “force of
invasion” expected across the landscape during the subse-
quent year of sampling to understand changes in inoculum
load through time and space (WebTable 1; WebFigure 1a).
We developed seven models (PreBlitz and 2008-2013),
with each model generated by incremental inclusion of
one additional year of observations and knowledge of the
force of invasion at any given site. Within the geographic
information system (GIS), we applied the equation of the

best model for each year to produce spatially explicit maps
of infection probability through time for the entire study
extent (Figure 2a). Locations were considered “high risk” if
infection likelihood exceeded the optimal threshold prob-
ability according to the receiver operating characteristic
(ROC; Manel et al. 2001). We validated each model by
comparing infection risk probability maps to locations of
positive and negative samples collected in the following
year of the SOD Blitz; overall predictive accuracy
(WebTable 2) is based on correct predictions of a subse-
quent year’s positive and negative samples in high- and
low-risk areas, respectively.

Evaluating SOD Blitz volunteers

Beginning with the 2011 SOD Blitz, we administered
questionnaires to assess participant backgrounds, and
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prior knowledge of and experiences with SOD and the
SOD Blitzes. We linked each participant questionnaire to
a submitted and lab-verified foliar sample. We then used
the Z test for difference of proportions to determine
whether the chance of successful detection of P ramorum
infection differs significantly between self-identified pro-
fessionals (eg participants in research, extension, plant
pathology, forestry, or environmental fields) and self-
identified non-professionals with little or no prior knowl-
edge of SOD biology. We also analyzed changes within
each group over time.

I Results and discussion

Our SOD Blitz program increased the number of foliar
samples (Figure 1a) in the central California SOD detec-
tion network by more than 560% and increased the mean
density of samples by 475% (from 0.04 km ™ to 0.23 km™?).
More than 1600 citizens (Figure 1b) participated in the
program between 2008 and 2013, generating 6504 georef-
erenced foliar samples of potential P ramorum infection
(1929 confirmed infected; 4575 confirmed uninfected)
(Figure 1, ¢ and d). PreBlitz samples collected between
2000 and 2007 from multiple sources indicated 786
infected and 373 uninfected sites (total: 1159) (Figure 1d).
Explicit observations of disease absence are critical to pre-
dicting species distributions (Véclavik and Meentemeyer
2009); thus, the substantial increase in the number of con-
firmed uninfected sites is particularly valuable for predict-
ing disease risk. The number of volunteers and foliar sam-
ples collected each year have generally increased since the
start of the program (Figure 1c), with many volunteers
(10-20% in a given year) returning for subsequent Blitz
events after completing their first year of sampling.

Question 1: does the SOD Blitz improve our under-
standing of pathogen habitat and our ability to
predict disease risk?

In models for all years, the risk of infection was greater at
locations with (1) increasing force of invasion
(WebFigure 1a) during the previous year, (2) greater host
plant density (WebFigure 1b), and (3) higher average
monthly precipitation during the wet season (WebFigure
lc; WebTable 2). As the program progressed and more
data were collected, new variables emerged as predictors
of infection risk. In the 2011 model, mean maximum
temperature during the wet season (WebFigure 1d) was
added as a significant predictor, having a negative influ-
ence on infection risk. In both the 2012 and 2013 models
— based on yet more citizen-science data — human popula-
tion density (WebFigure 1e) emerged as a fifth significant
factor; risk of infection was lower in more populated
urban locations. While these results are generally consis-
tent with previous research on habitat conditions con-
ducive to disease spread (eg Meentemeyer et al. 2008),
our analysis of citizen-science data collected in 2012 and

2013 revealed the possibility of a different association
between human population density and risk of infection
(WebTable 2).

Our ability to predict risk of infection — based on over-
all predictive accuracy — improved each year as the den-
sity and distribution of data collection increased over the
course of the SOD Blitz program (WebTable 2; Figure
1d). We predicted infection risk using PreBlitz data with
an accuracy of 65%. By 2012, incorporating 5 years of
SOD Blitz data, our overall predictive accuracy increased
to 78% (WebTable 2). Spatially explicit predictions of
infection probability through time (Figure 2, a—c) show
that the greatest risk of infection occurs in coastal forests
of Monterey, Santa Cruz, San Mateo, Marin, and north-
ern Sonoma counties. With each year of additional data
collection, our SOD Blitz models predicted increases in
the amount of land area facing high risk of infection; the
area at high risk increased from 662 km’ according to
PreBlitz model to 3907 km® based on the 2013 model
(WebTable 2). The most notable increases in risk
occurred in northern Sonoma County, in Santa Cruz
County between the San Jose Valley and Pacific Ocean,
and in the southern portion of the Big Sur in Monterey
County (Figure 2a). Our ability to identify areas of high
risk informs citizens where they may need to apply con-
trol efforts to spare economically, culturally, or aestheti-
cally important trees. These risk maps are also being used
to help prioritize areas for disease management actions
(Figure 2d). Note that our predictions of disease risk rep-
resent the probability of pathogen occurrence within
100-m x 100-m grid cell areas, not infection prevalence
of the plant host population.

The continuation of the SOD Blitz program each year is
making it possible for us to regularly update maps of infec-
tion risk and improve our understanding of the pathogen’s
preferred habitat. Because SOD is an emerging forest dis-
ease that is in disequilibrium with its environment, it is
important to regularly collect additional data as the dis-
ease colonizes new locations and spreads into its full
potential niche. This is vital to updating our understand-
ing of the pathogen’s habitat and to improving the accu-
racy of our predictive models, given that models generated
at earlier stages of disease invasion are known to under-
predict disease risk (Vaclavik and Meentemeyer 2012).

Question 2: did the educational background and
professional experience of our citizen scientists
affect probability of disease detection?

By linking lab-verified leaf tissue samples with partici-
pant questionnaires from the 2011, 2012, and 2013
Blitzes, we could empirically determine whether or not
the chance of successful detection of P ramorum infection
differed between and among self-identified professionals
and self-identified non-professionals. Z tests of foliar sam-
ple outcomes between groups revealed that in 2011 non-
professionals contributed a significantly greater propor-
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Figure 3. Z tests comparing disease detection success rates between self-identified professionals and self-identified non-professionals
for the 2011, 2012, and 2013 SOD Blitzes. “Successes” indicate the number of leaf tissue samples that tested positive for the
pathogen out of the “Total” number of samples submitted by the participants. The “Success rate” confidence interval and observed
value (shown in parentheses) estimates how precisely we know the actual success rate based on the observed data. The P value ranges
from O to 1 with a lower P value indicating greater confidence that chances of success differ between the groups. “Improvement”
estimates how much better or worse the non-professionals performed relative to the success rate of the self-identified professionals.

tion of positive samples (33% tested positive for infec-
tion) as compared with professionals (19%) (Figure 3). In
2012 and 2013, we observed no significant difference in
the proportion of positive samples contributed by the two
groups (Figure 3). Between 2012 and 2013, we found that
the rate of disease detection significantly increased for
both groups, which suggests that the effectiveness of our
education and training efforts is increasing. This result is
also consistent with previous reports (see Dickinson et al.
2010) that have shown how retention of citizen volun-
teers (in our case 10-20%) can improve the effectiveness
of citizen-science programs over time. Furthermore, ama-
teur citizen scientists were no less successful at identifying
and collecting positive leaf samples than volunteers with
professional backgrounds in science. These findings sup-
port claims that data collected by citizen scientists can be
reliable (Cohn 2008), particularly when guided by effec-
tive education and technical training programs (Gardiner

etal. 2012).

I Conclusions

Continuation of the SOD Blitz program over 6 consecu-
tive years increased the density and distribution of obser-
vations in our disease monitoring network, enhanced our
understanding of disease spread, and improved our ability
to predict locations where trees are at high risk of infec-
tion. We found that our trained amateur citizen scientists

were just as likely to correctly identify symptomatic vege-
tation as were scientific professionals. Using a carefully
designed sampling strategy with trained volunteers, we
increased the quantity and quality of disease distribution
data and developed more accurate predictive models.
Online dissemination of program results empowers citi-
zens by providing immediate access to the data they col-
lected, as well as to the tools used to track the spread of
SOD across the landscape and in their own backyards.
Regularly updated risk maps can also be used by citizen
scientists and other stakeholders to engage in commu-
nity-based management practices that help protect trees
in high-risk areas. The accessibility of the program’s
results via the internet has attracted considerable media
attention for the SOD Blitz, with more than 40 news arti-
cles highlighting the program since 2008. This media
coverage has generated additional support for the SOD
Blitz program and has further disseminated the results by
publishing revised maps of SOD distribution based on
those downloadable from the program’s website
(www.sodmap.org).

In summary, citizen-science efforts have enhanced
pathogen risk management and response. The emergence
of pests and pathogens is an inherently spatial process;
understanding and modeling their progress across a
region requires well-distributed, geographically explicit
data. Getting informed citizens on the ground quickly
and using the appropriate tools could improve initial
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response efforts, increasing the potential for eradication
or slowing disease spread, and limiting impacts to ecosys-
tems and society. Involving citizens also provides impor-
tant outreach and educational opportunities that inform
the public about the threat of emerging infectious dis-
eases and the actions they can take to help limit their
spread. We call on all scientists to engage, educate, and
empower citizens using bottom-up approaches in
response to emerging pests and pathogens.
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